18th International Senckenberg Conference

VI International Palaeontological Colloquium in Weimar

Late Neogene and Quaternary biodiversity and evolution: Regional developments and interregional correlations

A conference in honour of the 80th birthday of Professor HANS-DIETRICH KAHLKE

Weimar (Germany), 25th - 30th April, 2004

Conference Volume

Edited by
L.C. MAUL & R.-D. KAHLKE

Language editor
R. A. MEYRICK
Equus: an evolution without lineages?

VEÑA EISENMAHNN
UMR 8569 CNRS, Laboratoire de Paléontologie, Muséun national d'Histoire naturelle, 8 rue Buffon, F-75005 Paris, France
vera@mnhn.fr

The story of equids is still tantalizing and frustrating after 150 years of study, during which time it has attracted scientists and fed their debates. The fossil material is rich enough to raise hopes, but not rich enough to fulfills them. The variety and abundance of data exercises such constraints on interpretations that they rarely remain simple and conclusive.

Like the taxa themselves, ideas about equid evolution have their FAD's and LAD's, and like equid taxa, it is not easy to precisely identify these dates. It seems that Owen (1861) was the first to consider that *Hipparion* "might be" the transitional form between *Palaeotherium* and *Anchitherium*, on one hand, and the modern horse on the other. However, Owen favoured repeated creations and thus did not accept this interpretation. T.H. Huxley (1870) cited, and even though he was conscious of the dangers of mistaking "uncles and nephews for fathers and sons", he thought that the pedigree of the horses was a clear case of true linear evolution. The theory of the direct descent of *Equus* from *Hipparion*, first rejected by Pavlov (1888), remained a controversial matter for about 50 years. In 1932, Hofer considered that zebras descended from *Hipparion* and asses from zebras. The concept of a linear evolution was, however, soon replaced by the more complex tree representation (Simpson 1951) and its more recent cladogram variants (Evander 1989). Gradualists and punctualists alike accept this representation because some evolutionary trends seem obvious enough to justify discrete branches or, in other words, lineages.

There is no question that such a generalised tree is a good representation of an overall evolutionary model, nor that ancestor-descendent links exist. However, looking at evolution over 60 million years gives a picture that is not necessarily reproduced when zooming-in on a shorter period. According to Prothero & Shubin (1989), "the evolution of Oligocene horses is characterised by multiple speciation events" and not by orthogenesis "of a single continuous lineage." At a scale of about two million years, the relations between fossil *Equus* species appear more like a net than a ramification. I shall try to illustrate this by focusing on several epochs, beginning with modern *Equus* and going backwards in time.

In modern times, the genus (or subgenus) *Equus* is represented by two species (*E. grevyi* and *E. zebra*) and four specific groups: Caballines (*E. caballus* and *E. przewalskii*), Plains zebras (*E. burchelli* and *E. quagga*), Hemionin (*E. hemionus* and *E. kiang*) and Asinines (*E. africanus* and *E. asinus*).

During the Late Pleistocene, there is good evidence for one additional species within the Plains zebra group, *E. capensis* from South Africa (Thackeray 1992); at least two more within the Asinines, *E. melkensis* (Bachtach et al. 1984) from North Africa and *E. lauracensis* (Astur 1948) from France; another Hemionine, *E. hydruntinus* (Burke et al. 2003); and at least two of unknown affinities, *E. graziosii* from Italy (Azzaroli 1966) and *E..valorianii* from Uzbekistan (Eisenmann et al. 2002). Caballines include at least three morphs: the ubiquitous heavy horse (known by such names as *gallicus*, *germanicus*, *latipes*, *uratensis*, *lenensis*, *lambel*), the giant horse of San Siddico, Italy, and the southern light horse, *E. ariutines*, of Italy and Portugal (Cardoso & Eisenmann 1989). There is also a Caballine, *E. algericus*, from North Africa (Bachtach et al. 1984).

Between ca. 500 ka B.P. and the Late Pleistocene, there occur giant Caballines with varying morphologies (Mosbach and La Caune de l’Arago), in addition to some smaller ones (Lunel-Viel). The earliest *E. hydruntinus* is pos-
sibly represented at Lunel-Viel, France (Bonifay 1991). In Africa there is evidence for a small Equus at Rabat, Morocco (Emouzzi 1953), possibly related to the small and poorly known South African *E. lyreii* (Brink 1994). In South Africa, *E. capensis* is well represented (Eisenmann 2000).

At about 700 ka B.P. (Geerds et al. 1996), *Equus maurusianus*, a Plains zebra, is well documented from Algeria (Eisenmann 1979, 1980, 1981). Evidence of Caballines is rare for that period or earlier (Forsten 1986), at least in Europe. Instead, throughout the Old World, there is evidence of several morphs that may be referred to as *E. suessebornensis* sensu lato (Forsten 1986). In addition to the type-site Süßenborn (Musil 1969), these have been found at Akhaltsikhe, Georgia (Vekua 1936), North-eastern Siberia (*E. verae*, Sher 1971, and *E. colemensis*, Lazarev 1980), Old Crow, Yukon (Harington 1969; Morlan 1990) and probably at Cueva Victoria and Cullar de Baza, Spain (Alberdi & Ruiz Busto 1989). Moreover, at Süßenborn there is at least one Hemionine (*E. manilii*) and a small species of uncertain affinity, *E. altidens* (Forsten 1990).

About 1 million years ago, the Mongolian *E. nalaikhaensis* (Eisenmann & Kuznetsova in press) exhibits a mosaic of characters in its skull, teeth and limb bones, reminiscent of Hemiones, Grevy’s zebras and Asinines. This strange association is not so surprising if considered in parallel with current biometric interpretations (Oakenfull et al. 2000). Taking, as a starting point, the age of *E. maurusianus* (the first clear Plains zebra) at 700 ka, it seems that *E. aircanus* and *E. grevyi* differentiated at a short time before (820 ka and 770 ka B.P., respectively) and *E. zebra* slightly later (670 ka B.P.), although the precise timing and order of differentiation are uncertain. Hemiones would have been differentiating at around 1.07 Ma B.P. and Caballines still earlier, at about 2 Ma B.P. (according to Oakenfull et al. 2000, “the common ancestor of the extant equids was a species that probably existed around 2 mya and was not one of the first *Equus* to have emerged in the New World ca 3.7 mya”). In practical terms, this means that ca. 1 Ma B.P., all *Equus* species that were not caballine were able to express Hemione, ass and zebra characters, but these were not combined in the specific ways familiar to us. *Equus* may thus be compared to a kaleidoscope, able to produce different pictures while always retaining the same crystals.

Another important point is the apparent cra-

niological gap between *Plesippus* and *Alohippus*, on the one hand, and *Equus*, on the other. One basicranial character distinguishes them perfectly (Eisenmann & Baylac 2000), whereas teeth and limb bones may look absolutely alike. In practice, this means that, in the absence of well-preserved skulls, there is no way to tell whether Early Pleistocene species should be attributed to *Equus* or *Alohippus*. Accordingly, there is no sense in proposing lineages between, for example, *E. (Alohippus) stenonis*, *E. (?) granatensis*, *E. (?) altidens* and *E. (Equus) hyduntins*. Moreover, “lineages” leading, for example, from *Plesippus* or *Alohippus* to *Equus grevyi* are certainly wrong (Forsten & Eisenmann 1995).

This lack of traceable *Equus* lineages appears strange by comparison with other large mammals. Several explanations are possible. The first is that inside a specific group like the Caballines, there is no unidirectional trend for any given character. There are instead fluctuations in size (Eisenmann & de la bureaucracy 2002), in protocone length, in more-or-less cuspial adaptations and so on. Admittedly, the 500 ka old horse from Mosbach 2 (Mauc et al. 2000) is different from most younger horses. However, there is no reason to describe it as more primitive or less adapted. It was recently demonstrated that, in virtually contemporaneous Magdalenian sites (encompassing a few thousands years), the anatomical features of horses differ between the Paris Basin and the Swiss Plateau (Berger 2003). On a longer time span, anatomical features will also “change” naturally, but as yet they have never been observed to “evolve”. The same is probably true for other *Equus* species or specific groups other than Caballines.

The second possible explanation is that the differentiation of most modern species took place less than 1 million years ago, on an area encompassing at least Asia, Europe and Africa (North America is very probably the cradle of Caballines, and possibly of Hemionines, but there is no sound evidence for a North American origin for modern asses or zebras). Compared with these temporal and geographical ranges, the information at hand is sparse.

The third possible reason may be related to the methodology employed in the study of *Equus*, which relies on extensive comparisons of numerous skull, teeth and limb bone characters. Cuvier, the founder of comparative anatomy, brilliantly demonstrated the law of correlation between characters when he dissected
the fossil marsupial from Montmartre. Indeed, this law is the very basis of palaeontological reconstructions of complex organisms. On the other hand, the scale of observation and the kaleidoscope pattern interfere. In the relatively recent past, there are known puzzling combinations of characters (and possibly others which have not yet been identified) that would not have been evident if fewer characters had been studied.

